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Abstract 
Packaging density, electrical performance and cost are the 

primary factors driving electronic package architectures for 
high-performance server markets. Considerations such as 
thermal performance and mechanical reliability are equally 
important but tend to be addressed later in the design cycle.  
Presented in this paper is a historical view of the packaging 
trends leading to the current multi-die package options.   
Particular attention must be placed on the thermal limitations 
and benefits offered by each design.  Since multi-die packages 
have many junctions of interest, a method for characterizing 
the package with arbitrary power conditions is required. A 
superposition method, using a matrix approach, is presented 
that will enable the end-user to investigate the effects of 
power levels on junction temperatures.  Experimental data 
measured on a 2.5D package were taken to demonstrate the 
matrix approach for predicting junction temperature based on 
an independent power map.  The agreement between the 
matrix model and data generated by an independent power 
map is within 8%. 
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Nomenclature 
P  Power (W) 
T  Temperature (°C) 
  Influence Coefficient (°C/W) 

1. Introduction 
Next generation multi-die integrated circuit (IC) package 

integration requires a flexible package technology portfolio.   
A key ingredient in this development path is qualifying 
module technologies that can meet a growing variety of 
customer needs.   High performance system-level or multi-die 
packaging have been around for decades. IBM’s server class 
products, for example the ES9000 [1], were among the first 
products to implement multiple die into a very high-
performance module, see the thermal conduction module 
shown in Figure 1. 

 

 
Figure 1:  IBM Thermal conduction module. 

 
More recently, the new compute performance levels enabled 
by cutting-edge FinFet central processing units (CPUs) and 
graphic processing units (GPUs), and a new class of high-
density, high-bandwidth dynamic random-access memory 
(DRAM), such as the high bandwidth memory (HBM), has 
not only raised expectations but has also enabled a multitude 
of product possibilities.  Market drivers for high-speed 
graphics, server-class compute in data centers and for 
artificial intelligence (AI) keeps raising the bar higher for 
what must be achieved in IC packages.   

Several key technologies have come together to create this 
bold shift to higher performance.   An important innovation 
has been thru-silicon via (TSV) technology, whether in the 
interposer, memory or logic devices. Shown in Figure 2 is the 
integration of the application-specific integrated circuit 
(ASIC) on the silicon interposer, where CuP refers to copper 
pillar interconnect and C4 refers to controlled collapse chip 
connection. 

 
Figure 2:  2.5D package cross-section. 

 
To address these growing differentiations of product 

needs, design options were developed for several key multi-
die module developments. 2.5D TSV package construction 
remains a high-end bulwark with very predictable package 
reliability all the way to full reticle sized TSV-bearing 
interposers. With the next wave of product differentiation 
based on product test strategies, known good die (KGD) 
specifications and expected functional die size, TSV, the chip 
on substrate (COS) solution has also evolved to include both 
molded chip-on-wafer (COW) constructions as well. 2.5D 
packages have been qualified and are in production for sizes 
ranging up to 55mm x 55mm. To assist product development 
using these advanced features, a reliable means for predicting 
junction temperatures is required. 

To date, 2.5D has been used nearly exclusively for 
combinations of the latest IC logic ASIC and HBM. The 
combination of ASIC and very high-bandwidth, high capacity 
DRAM, has been a winning combination for several product 
classes, including network switches and GPUs for gaming as 
well as high-end GPUs used in deep learning or AI algorithm 
optimizations in the data center.  

Top Die

CuP

TSV

C4

Substrate

978-1-5386-4402-7/18/$31.00 ©2018 IEEE                             21                                                 34th SEMI-THERM Symposium 





 

 

The DRAM memory bus is a special, very wide parallel 
interface with 1,024 data bits on 1,024 physical signal lines.   
This parallel bus requires much lower power than a serial 
interface, but does requires very fine line signal routing, with 
line and space of 1 or 2 um and 3 or 4 layers being common.   
This type of interface is currently possible using only copper 
damascene back-end technology from the IC fabrication 
industry. This is why the silicon-based interposer using a 
65nm or 90 nm copper back-end fabrication process is now 
common.  
Even cutting-edge fine-line organic package substrates cannot 
provide the required level of signal routing density.  Figure 3 
shows a typical configuration, in this case one ASIC and 4 
HBM stacked DRAM devices. These IC packages, which 
utilize HBM or HBM version 2, are possible today using 2.5D 
silicon interposer technology. 

 

 
Figure 3. 2.5D package with ASIC and HBM. 

 
The 2.5D TSV package construction is the first practical 

approach to integrating different ICs that require this 
extremely fine-signal routing. The reliability of this package 
type has been demonstrated in JEDEC level accelerated 
testing. One exceptional benefit for use of a silicon-based 
interposer is that the CTE mismatch to the ultra-low dielectric 
constant (ULK) layers in the functional die is very low. This, 
in turn lowers the stress in the functional die ULK layers as 
well as making the 2.5D construction a popular choice for 
upcoming 7nm silicon node products. In 2017, the most 
prominent product introductions using 2.5D packaging 
technology have come from the GPU arena, for both high end 
gaming and deep learning applications from leading suppliers.  
GPU architecture use hundreds of small parallel processing 
cores optimized for matrix math, an essential constituent in 
3D graphics rendering.   As it turns out, this very same 
processor architecture is also very well suited for AI database 
optimization now being used in large data centers for facial 
and voice recognition as well as other applications. 2.5D 
packaging is expected to remain a mainstay of the high-
performance computing sector, mainly in high end gaming 
and AI and networking data center applications for years to 
come. 

Integrating multiple die on the same silicon interposer 
creates thermal challenges because each device has its own 
temperature limitation and power requirements.  Moreover, a 
specific multi-die package can be configured to operate at 
many different power levels depending on the end-use 

application and the nature of the programs being supported.  
For these reasons, it becomes a significant challenge to 
characterize the thermal performance of the package for many 
different applications anticipated during field operation.  
System architects need a method for predicting junction 
temperatures as a function of power map to support their 
given application.   

Linear superposition is a common technique used for 
predicting the temperature field as a function of the power 
map for the various devices operating on the multi-die 
package.  Lall et.al. [2] provided an experimental method for 
predicting the junction temperature for a multi-die package 
mounted in a quad flat pack (QFP) package with a drop-in 
heat spreader. The overall solution was based on the average 
package temperature.  Individual chip temperatures were 
predicted as rise above the package average temperature 
determined by power factors for each chip.  Following this 
approach individual die temperatures for many different 
power configurations could be predicted using data from a 
limited number of tests.  Emigh [3], Fan [4] and Zhang [5] 
presented an application of the classical superposition 
approach using a matrix of influence coefficients.  The 
temperature for a given device was calculated by adding the 
contribution made by each device powered. The contribution 
was controlled by influence coefficients.  The value of the 
influence coefficient was larger if the contributing chip was in 
close proximity to the device in question or if there was a 
connection with a low thermal resistance path.   

The application of linear superposition requires that the 
heat transfer process become independent of power applied to 
the package. For limited sets of conditions, this assumption is 
valid.  For example, if the temperature rise is not too large, 
then the thermal conductivity will not change significantly 
and the nonlinear effects will not be present.  In forced 
convection regimes, the heat transfer coefficient does not 
change significantly when the power levels are increased.  
Superposition methods may work well for high power 
applications that require an external heat sink with a cooling 
fan such as a CPU cooling fan. 

However, for natural convection, power changes may have 
a significant influence on air circulation around the package 
and mother board thus changing the heat transfer coefficient. 
Superposition methods will not work well under natural or 
still air conditions due to the nonlinearity response of the heat 
transfer coefficient with the applied power.   

A systematic calculation method must be developed for 
predicting die temperature as a function power maps applied 
to multiple power blocks in a 2.5D application.  Experimental 
data and a superposition calculation method is provided in this 
study to demonstrate the limitations and applications for 
predicting temperatures in a multi-zone heated package. 

 
2. Experimental Methods 

A 2.5D thermal test vehicle (TTV) was constructed to 
determine the thermal response of the ASIC and HBM to 
different power maps. Both the ASIC and HBM share a 
common silicon interposer. The silicon interposer is 
connected to the substrate and the substrate is connected to the 
mother board.  Power connections, sense lines and 
temperature sensor connections are made through pin headers 



 

 

on the mother board.  A standard CPU cooler is used as a heat 
sink to dissipate the rejected heat.  An overview of the 2.5D 
package and mother board is shown in Figure 4. 
 

 
Figure 4. TTV system. 

 
The power zones for the TTV are shown in Figure 5 with 

the corresponding heat fluxes (relative values shown) applied 
to each block.  Each zone on the ASIC included independent 
heaters and temperature sensors.  The HBM also included 
heaters and thermal sensors. 

 

 
Figure 5. Power block relative heat flux. 

 
The CPU fan was run at the same speed for all tests.  The 

modeling results presented here are for one fan speed.  
Additional testing would be required to model the effect of 
fan speed on die temperatures. One set of power conditions is 
shown in Figure 6.  The data were normalized by dividing 
each individual power block by the total power supplied to the 
TTV.  

 
Figure 6. Nomalized power distribution. 

 
The corresponding temperature rise above ambient is 

shown in Figure 7. The temperature response is not only a 
function of the power applied to the power block but also 
depends on its location and its neighboring power blocks. 
Even though power at block 1 was similar in magnitude and 
size compared to block 5, the corresponding temperature at 
location 1 is significantly higher than at location 5.   

 

Figure 7. Temperature rise above ambient for power blocks 
shown in Figure 6. 

3. Linear Superposition Model 

A training set of power conditions was used to power 
individual heaters one at a time while reading all temperature 
sensors.  To predict the temperature-rise above ambient for a 
new power set, influence coefficients, ij, were extracted from 
a linear model as represented in equation (1). 

቎
૚,૚࣒ ⋯ ࡺ,૚࣒

⋮ ⋱ ⋮
૚,ࡺ࣒ … ࡺ,ࡺ࣒

቏ ൥
૚ࡼ
⋮
ࡺࡼ

൩ ൌ ൥
૚ࢀ∆
⋮

ࡺࢀ∆
൩                     (1) 

Power devices were turned on for all 13 heaters while 
recording temperatures 1 – 11 and temperatures for HBM-A 
and HBM-B. A total of thirteen independent power 
combinations were tested experimentally to generate a 
training set necessary for the evaluation of the  matrix. A 
simplification can be made to solve the  matrix by powering 
the heaters one at a time. For this limiting case, it follows that 
the influence coefficients can be calculated as  
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where “j” refers to the power block location and “i” refers to 
the location of the temperature sensor.   

The overall package temperature rise is expected to be 
smaller when heaters are powered individually due to the total 
power being smaller compared to the power map where all 
heaters are activated at the same time.  For individually 
powered heaters, the temperatures ranged between 4 to 30°C. 
This temperature range is lower than the condition when all 
power zones were run at the same time, see Figure 7.  After 
running 13 power maps corresponding to heaters 1-13 
powered one at a time, numerical values for ij were 
determined using equation (2). Shown below in Figure 8 is a 
summary of the influence coefficient matrix, .  Notice that 
the main-diagonal elements (shown in heavy outlined boxes in 
Figure 8) have higher values compared to off-diagonal 
elements. The reason for this observation is that the influence 
of a power block on the temperature sensor at the same 
location is expected to  be greater than at neighboring 
temperature sensors.   

 
Figure 8. Influence coefficients generated from the first 

training set, heaters powered one at a time. 
 

One should not expect a symmetric matrix. For example, 
heater 1 may have a different effect on temperature 2 
compared to heater 2 on temperature 1. To test the accuracy of 
the super-position model, an independent power set, [Pi], was 
experimentally tested and modeled using equation (1) and the 
influence coefficients reported in Figure 8. A comparison of 
the experimental data and model is shown in Figure 9. 

 
Figure 9. Comparison of super-position model to experimental 

data. 
 
The model overpredicted the actual temperatures by 
approximately 26%. It is well known that material properties 
used to construct the package (i.e. thermal conductivity) are 
temperature dependent. The training power map set was taken 
at a condition that produced lower die temperatures compared 
to the test set when all heaters were activated.  

A different approach was needed to develop a training set 
that keeps the average temperature of the package similar to 
the temperatures produced by a desired power map. Thirteen 
power training sets were developed by randomly varying the 
power for each block about a nominal value with the 
constraint that these values did not produce a condition that 
led to an over-heat condition (i.e. exceed safe material 
temperature limits).  Data taken on 13 different training sets 
were loaded into the matrix listed in equation (3).  The 
superscript for the power and temperature vectors indicates a 
specific training set, 1-13.  The subscript indicates the 
location of the power blocks and temperature sensors, see 
Figure 5. 
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Numerical values for the ij matrix elements were calculated 
by taking the inverse of the power matrix as show in equation 
(4).        
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A new set of influence coefficients were calculated and 

reported in Figure 10.   Notice that the off-diagonal elements 
in some cases are negative whereas the off-diagonal elements 
in the first training set, Figure 8, were all observed to be 
positive.  
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Figure 10. Influence coefficient matrix generated from the 

second training set using random power settings. 
         

 
Figure 11. Equal power training set for super-position model. 

 
The positive influence coefficients in the first training set 

resulted because the power was applied to one heater at a time 
and the  values were calculated independently from other 
power tests. A positive value is expected since the 
temperature should rise at all locations when power is applied. 
When all boundary conditions are implemented at the same 
time using the inverse matrix approach for the second training 
set written in equation (4), the effect of experimental 
variations cause some coefficients to be positive while others 
are negative. It is the sum of all coefficients multiplied by 
power that is used to calculate temperature. The off-diagonal 
elements balance in the sum to calculate a positive 
temperature.  The main diagonal elements should be positive. 
This is a requirement; for example, since adding power to 
block 5 should cause an increase in temperature at location 5.  
The improved accuracy of the model is noted by the predicted 
results falling closer to the diagonal line as show in Figure 11. 
The average difference between the superposition model and 
the actual temperature difference are 3% with a maximum 
difference of 8%.   

A method for representing the thermal performance of the 
2.5D package subject to an arbitrary power map that is within 
the temperature range of the training set, produces accurate 
temperature predictions. This approach may be useful in 

helping package designers predict junction temperatures as a 
function of different power maps.  
 
Conclusions 

Linear superposition models can accurately predict 
junction temperatures for arbitrary power maps provided the 
package average temperature is similar. A matrix inversion 
method was introduced using influence coefficients to predict 
die temperatures. [N] number of training sets are required for 
[N] number of heat sources with a corresponding [N] number 
of temperature sensors. When training power maps produce 
temperatures that vary significantly greater than the case of 
interest, material property non-linearities may make it difficult 
to recover a linear model that will accurately predict the 
temperature response for an applied power map. 
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